閱讀屋>總結範文> 高一數學知識點總結歸納

高一數學知識點總結歸納

高一數學知識點總結歸納9篇

  總結是事後對某一時期、某一專案或某些工作進行回顧和分析,從而做出帶有規律性的結論,它能使我們及時找出錯誤並改正,因此,讓我們寫一份總結吧。但是卻發現不知道該寫些什麼,以下是小編幫大家整理的高一數學知識點總結歸納,歡迎大家借鑑與參考,希望對大家有所幫助。

高一數學知識點總結歸納1

  【(一)、對映、函式、反函式】

  1、對應、對映、函式三個概念既有共性又有區別,對映是一種特殊的對應,而函式又是一種特殊的對映.

  2、對於函式的概念,應注意如下幾點:

  (1)掌握構成函式的三要素,會判斷兩個函式是否為同一函式.

  (2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變數間的函式關係式,特別是會求分段函式的解析式.

  (3)如果y=f(u),u=g(x),那麼y=f[g(x)]叫做f和g的複合函式,其中g(x)為內函式,f(u)為外函式.

  3、求函式y=f(x)的反函式的一般步驟:

  (1)確定原函式的值域,也就是反函式的定義域;

  (2)由y=f(x)的解析式求出x=f-1(y);

  (3)將x,y對換,得反函式的習慣表示式y=f-1(x),並註明定義域.

  注意①:對於分段函式的反函式,先分別求出在各段上的反函式,然後再合併到一起.

  ②熟悉的應用,求f-1(x0)的值,合理利用這個結論,可以避免求反函式的過程,從而簡化運算.

  【(二)、函式的解析式與定義域】

  1、函式及其定義域是不可分割的整體,沒有定義域的函式是不存在的,因此,要正確地寫出函式的解析式,必須是在求出變數間的對應法則的同時,求出函式的定義域.求函式的定義域一般有三種類型:

  (1)有時一個函式來自於一個實際問題,這時自變數x有實際意義,求定義域要結合實際意義考慮;

  (2)已知一個函式的解析式求其定義域,只要使解析式有意義即可.如:

  ①分式的分母不得為零;

  ②偶次方根的被開方數不小於零;

  ③對數函式的真數必須大於零;

  ④指數函式和對數函式的底數必須大於零且不等於1;

  ⑤三角函式中的正切函式y=tanx(x∈R,且k∈Z),餘切函式y=cotx(x∈R,x≠kπ,k∈Z)等.

  應注意,一個函式的解析式由幾部分組成時,定義域為各部分有意義的自變數取值的公共部分(即交集).

  (3)已知一個函式的定義域,求另一個函式的定義域,主要考慮定義域的深刻含義即可.

  已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值範圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域.

  2、求函式的解析式一般有四種情況

  (1)根據某實際問題需建立一種函式關係時,必須引入合適的變數,根據數學的有關知識尋求函式的解析式.

  (2)有時題設給出函式特徵,求函式的解析式,可採用待定係數法.比如函式是一次函式,可設f(x)=ax+b(a≠0),其中a,b為待定係數,根據題設條件,列出方程組,求出a,b即可.

  (3)若題設給出複合函式f[g(x)]的表示式時,可用換元法求函式f(x)的表示式,這時必須求出g(x)的值域,這相當於求函式的定義域.

  (4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現其他未知量(如f(-x),等),必須根據已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表示式.

  【(三)、函式的值域與最值】

  1、函式的值域取決於定義域和對應法則,不論採用何種方法求函式值域都應先考慮其定義域,求函式值域常用方法如下:

  (1)直接法:亦稱觀察法,對於結構較為簡單的函式,可由函式的解析式應用不等式的性質,直接觀察得出函式的值域.

  (2)換元法:運用代數式或三角換元將所給的複雜函式轉化成另一種簡單函式再求值域,若函式解析式中含有根式,當根式裡一次式時用代數換元,當根式裡是二次式時,用三角換元.

  (3)反函式法:利用函式f(x)與其反函式f-1(x)的定義域和值域間的關係,透過求反函式的定義域而得到原函式的值域,形如(a≠0)的函式值域可採用此法求得.

  (4)配方法:對於二次函式或二次函式有關的函式的值域問題可考慮用配方法.

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函式的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧.

  (6)判別式法:把y=f(x)變形為關於x的一元二次方程,利用“△≥0”求值域.其題型特徵是解析式中含有根式或分式.

  (7)利用函式的單調性求值域:當能確定函式在其定義域上(或某個定義域的子集上)的單調性,可採用單調性法求出函式的值域.

  (8)數形結合法求函式的值域:利用函式所表示的幾何意義,藉助於幾何方法或圖象,求出函式的值域,即以數形結合求函式的值域.

  2、求函式的最值與值域的區別和聯絡

  求函式最值的常用方法和求函式值域的方法基本上是相同的,事實上,如果在函式的值域中存在一個最小(大)數,這個數就是函式的最小(大)值.因此求函式的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異.

  如函式的值域是(0,16],值是16,無最小值.再如函式的值域是(-∞,-2]∪[2,+∞),但此函式無值和最小值,只有在改變函式定義域後,如x>0時,函式的最小值為2.可見定義域對函式的值域或最值的影響.

  3、函式的最值在實際問題中的應用

  函式的最值的應用主要體現在用函式知識求解實際問題上,從文字表述上常常表現為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現實問題上,求解時要特別關注實際意義對自變數的制約,以便能正確求得最值.

  【(四)、函式的奇偶性】

  1、函式的奇偶性的定義:對於函式f(x),如果對於函式定義域內的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那麼函式f(x)就叫做奇函式(或偶函式).

  正確理解奇函式和偶函式的定義,要注意兩點:(1)定義域在數軸上關於原點對稱是函式f(x)為奇函式或偶函式的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恆等式.(奇偶性是函式定義域上的整體性質).

  2、奇偶函式的定義是判斷函式奇偶性的主要依據。為了便於判斷函式的奇偶性,有時需要將函式化簡或應用定義的等價形式:

  注意如下結論的運用:

  (1)不論f(x)是奇函式還是偶函式,f(|x|)總是偶函式;

  (2)f(x)、g(x)分別是定義域D1、D2上的奇函式,那麼在D1∩D2上,f(x)+g(x)是奇函式,f(x)·g(x)是偶函式,類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

  (3)奇偶函式的複合函式的奇偶性通常是偶函式;

  (4)奇函式的導函式是偶函式,偶函式的導函式是奇函式。

  3、有關奇偶性的幾個性質及結論

  (1)一個函式為奇函式的充要條件是它的圖象關於原點對稱;一個函式為偶函式的充要條件是它的圖象關於y軸對稱.

  (2)如要函式的定義域關於原點對稱且函式值恆為零,那麼它既是奇函式又是偶函式.

  (3)若奇函式f(x)在x=0處有意義,則f(0)=0成立.

  (4)若f(x)是具有奇偶性的區間單調函式,則奇(偶)函式在正負對稱區間上的單調性是相同(反)的。

  (5)若f(x)的定義域關於原點對稱,則F(x)=f(x)+f(-x)是偶函式,G(x)=f(x)-f(-x)是奇函式.

  (6)奇偶性的推廣

  函式y=f(x)對定義域內的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關於直線x=a對稱,即y=f(a+x)為偶函式.函式y=f(x)對定義域內的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關於點(a,0)成中心對稱圖形,即y=f(a+x)為奇函式。

  【(五)、函式的單調性】

  1、單調函式

  對於函式f(x)定義在某區間[a,b]上任意兩點x1,x2,當x1>x2時,都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調遞增(或遞減);增函式或減函式統稱為單調函式.

  對於函式單調性的定義的理解,要注意以下三點:

  (1)單調性是與“區間”緊密相關的概念.一個函式在不同的區間上可以有不同的單調性.

  (2)單調性是函式在某一區間上的“整體”性質,因此定義中的x1,x2具有任意性,不能用特殊值代替.

  (3)單調區間是定義域的子集,討論單調性必須在定義域範圍內.

  (4)注意定義的兩種等價形式:

  設x1、x2∈[a,b],那麼:

  ①在[a、b]上是增函式;

  在[a、b]上是減函式.

  ②在[a、b]上是增函式.

  在[a、b]上是減函式.

  需要指出的是:①的幾何意義是:增(減)函式圖象上任意兩點(x1,f(x1))、(x2,f(x2))連線的斜率都大於(或小於)零.

  (5)由於定義都是充要性命題,因此由f(x)是增(減)函式,且(或x1>x2),這說明單調性使得自變數間的不等關係和函式值之間的不等關係可以“正逆互推”.

  5、複合函式y=f[g(x)]的單調性

  若u=g(x)在區間[a,b]上的單調性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調性相同,則複合函式y=f[g(x)]在[a,b]上單調遞增;否則,單調遞減.簡稱“同增、異減”.

  在研究函式的單調性時,常需要先將函式化簡,轉化為討論一些熟知函式的單調性。因此,掌握並熟記一次函式、二次函式、指數函式、對數函式的單調性,將大大縮短我們的判斷過程.

  6、證明函式的單調性的方法

  (1)依定義進行證明.其步驟為:①任取x1、x2∈M且x1(或<)f(x2);③根據定義,得出結論.

  (2)設函式y=f(x)在某區間內可導.

  如果f′(x)>0,則f(x)為增函式;如果f′(x)<0,則f(x)為減函式.

  【(六)、函式的圖象】

  函式的圖象是函式的直觀體現,應加強對作圖、識圖、用圖能力的培養,培養用數形結合的思想方法解決問題的意識.

  求作圖象的函式表示式

  與f(x)的關係

  由f(x)的圖象需經過的變換

  y=f(x)±b(b>0)

  沿y軸向平移b個單位

  y=f(x±a)(a>0)

  沿x軸向平移a個單位

  y=-f(x)

  作關於x軸的對稱圖形

  y=f(|x|)

  右不動、左右關於y軸對稱

  y=|f(x)|

  上不動、下沿x軸翻折

  y=f-1(x)

  作關於直線y=x的對稱圖形

  y=f(ax)(a>0)

  橫座標縮短到原來的,縱座標不變

  y=af(x)

  縱座標伸長到原來的|a|倍,橫座標不變

  y=f(-x)

  作關於y軸對稱的圖形

  【例】定義在實數集上的函式f(x),對任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.

  ①求證:f(0)=1;

  ②求證:y=f(x)是偶函式;

  ③若存在常數c,使求證對任意x∈R,有f(x+c)=-f(x)成立;試問函式f(x)是不是週期函式,如果是,找出它的一個週期;如果不是,請說明理由.

  思路分析:我們把沒有給出解析式的函式稱之為抽象函式,解決這類問題一般採用賦值法.

  解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1.

  ②令x=0,則有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),這說明f(x)為偶函式.

  ③分別用(c>0)替換x、y,有f(x+c)+f(x)=

  所以,所以f(x+c)=-f(x).

  兩邊應用中的結論,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),

  所以f(x)是週期函式,2c就是它的一個週期.

高一數學知識點總結歸納2

  一:函式及其表示

  知識點詳解文件包含函式的概念、對映、函式關係的判斷原則、函式區間、函式的三要素、函式的定義域、求具體或抽象數值的函式值、求函式值域、函式的表示方法等

  1. 函式與對映的區別:

  2. 求函式定義域

  常見的用解析式表示的函式f(x)的定義域可以歸納如下:

  ①當f(x)為整式時,函式的定義域為R.

  ②當f(x)為分式時,函式的定義域為使分式分母不為零的實數集合。

  ③當f(x)為偶次根式時,函式的定義域是使被開方數不小於0的實數集合。

  ④當f(x)為對數式時,函式的定義域是使真數為正、底數為正且不為1的實數集合。

  ⑤如果f(x)是由幾個部分的數學式子構成的,那麼函式定義域是使各部分式子都有意義的實數集合,即求各部分有意義的實數集合的交集。

  ⑥複合函式的定義域是複合的各基本的函式定義域的交集。

  ⑦對於由實際問題的背景確定的函式,其定義域除上述外,還要受實際問題的制約。

  3. 求函式值域

  (1)、觀察法:透過對函式定義域、性質的觀察,結合函式的解析式,求得函式的值域;

  (2)、配方法;如果一個函式是二次函式或者經過換元可以寫成二次函式的形式,那麼將這個函式的右邊配方,透過自變數的範圍可以求出該函式的值域;

  (3)、判別式法:

  (4)、數形結合法;透過觀察函式的圖象,運用數形結合的方法得到函式的值域;

  (5)、換元法;以新變數代替函式式中的某些量,使函式轉化為以新變數為自變數的函式形式,進而求出值域;

  (6)、利用函式的單調性;如果函式在給出的定義域區間上是嚴格單調的,那麼就可以利用端點的函式值來求出值域;

  (7)、利用基本不等式:對於一些特殊的分式函式、高於二次的函式可以利用重要不等式求出函式的值域;

  (8)、最值法:對於閉區間[a,b]上的連續函式y=f(x),可求出y=f(x)在區間[a,b]內的極值,並與邊界值f(a).f(b)作比較,求出函式的最值,可得到函式y的值域;

  (9)、反函式法:如果函式在其定義域記憶體在反函式,那麼求函式的值域可以轉化為求反函式的定義域。

高一數學知識點總結歸納3

  一、集合及其表示

  1、集合的含義:

  “集合”這個詞首先讓我們想到的是上體育課或者開會時老師經常喊的“全體集合”。數學上的“集合”和這個意思是一樣的,只不過一個是動詞一個是名詞而已。

  所以集合的含義是:某些指定的物件集在一起就成為一個集合,簡稱集,其中每一個物件叫元素。比如高一二班集合,那麼所有高一二班的同學就構成了一個集合,每一個同學就稱為這個集合的元素。

  2、集合的表示

  通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬於集合A,記作d?A。

  有一些特殊的集合需要記憶:

  非負整數集(即自然數集)N正整數集N_或N+

  整數集Z有理數集Q實數集R

  集合的表示方法:列舉法與描述法。

  ①列舉法:{a,b,c……}

  ②描述法:將集合中的元素的公共屬性描述出來。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

  ③語言描述法:例:{不是直角三角形的三角形}

  例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

  強調:描述法表示集合應注意集合的代表元素

  A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是陣列元素(x,y),集合B中只有元素y。

  3、集合的三個特性

  (1)無序性

  指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。

  例題:集合A={1,2},B={a,b},若A=B,求a、b的值。

  解:,A=B

  注意:該題有兩組解。

  (2)互異性

  指集合中的元素不能重複,A={2,2}只能表示為{2}

  (3)確定性

  集合的確定性是指組成集合的元素的性質必須明確,不允許有模稜兩可、含混不清的情況。

高一數學知識點總結歸納4

  1、作法與圖形:透過如下3個步驟

  (1)列表;

  (2)描點;

  (3)連線,可以作出一次函式的影象——一條直線。因此,作一次函式的影象只需知道2點,並連成直線即可。(通常找函式影象與x軸和y軸的交點)

  2、性質:(1)在一次函式上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函式與y軸交點的座標總是(0,b),與x軸總是交於(—b/k,0)正比例函式的影象總是過原點。

  3、k,b與函式影象所在象限:

  當k>0時,直線必透過一、三象限,y隨x的增大而增大;

  當k<0時,直線必透過二、四象限,y隨x的增大而減小。

  當b>0時,直線必透過一、二象限;

  當b=0時,直線透過原點

  當b<0時,直線必透過三、四象限。

  特別地,當b=O時,直線透過原點O(0,0)表示的是正比例函式的影象。

  這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

高一數學知識點總結歸納5

  圓的方程定義:

  圓的標準方程(x—a)2+(y—b)2=r2中,有三個引數a、b、r,即圓心座標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心座標是圓的定位條件,半徑是圓的定形條件。

  直線和圓的位置關係:

  1、直線和圓位置關係的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關係。

  ①Δ>0,直線和圓相交。②Δ=0,直線和圓相切。③Δ<0,直線和圓相離。

  方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。

  ①dR,直線和圓相離。

  2、直線和圓相切,這類問題主要是求圓的切線方程。求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。

  3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。

  切線的性質

  ⑴圓心到切線的距離等於圓的半徑;

  ⑵過切點的半徑垂直於切線;

  ⑶經過圓心,與切線垂直的直線必經過切點;

  ⑷經過切點,與切線垂直的直線必經過圓心;

  當一條直線滿足

  (1)過圓心;

  (2)過切點;

  (3)垂直於切線三個性質中的兩個時,第三個性質也滿足。

  切線的.判定定理

  經過半徑的外端點並且垂直於這條半徑的直線是圓的切線。

  切線長定理

  從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。

高一數學知識點總結歸納6

  二次函式

  I.定義與定義表示式

  一般地,自變數x和因變數y之間存在如下關係:y=ax^2+bx+c

  (a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

  則稱y為x的二次函式。

  二次函式表示式的右邊通常為二次三項式。

  II.二次函式的三種表示式

  一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

  頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

  交點式:y=a(x-x?)(x-x?)[僅限於與x軸有交點A(x?,0)和B(x?,0)的拋物線]

  注:在3種形式的互相轉化中,有如下關係:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函式的影象

  在平面直角座標系中作出二次函式y=x^2的影象,可以看出,二次函式的影象是一條拋物線。

  IV.拋物線的性質

  1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的交點為拋物線的頂點P。

  特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個頂點P,座標為

  P(-b/2a,(4ac-b^2)/4a)

  當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

  3.二次項係數a決定拋物線的開口方向和大小。

  當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

高一數學知識點總結歸納7

  考點要求:

  1、幾何體的展開圖、幾何體的三檢視仍是高考的熱點。

  2、三檢視和其他的知識點結合在一起命題是新教材中考查學生三檢視及幾何量計算的趨勢。

  3、重點掌握以三檢視為命題背景,研究空間幾何體的結構特徵的題型。

  4、要熟悉一些典型的幾何體模型,如三稜柱、長(正)方體、三稜錐等幾何體的三檢視。

  知識結構:

  1、多面體的結構特徵

  (1)稜柱有兩個面相互平行,其餘各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。

  正稜柱:側稜垂直於底面的稜柱叫做直稜柱,底面是正多邊形的直稜柱叫做正稜柱。反之,正稜柱的底面是正多邊形,側稜垂直於底面,側面是矩形。

  (2)稜錐的底面是任意多邊形,側面是有一個公共頂點的三角形。

  正稜錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的稜錐叫做正稜錐。特別地,各稜均相等的正三稜錐叫正四面體。反過來,正稜錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心。

  (3)稜臺可由平行於底面的平面截稜錐得到,其上下底面是相似多邊形。

  2、旋轉體的結構特徵

  (1)圓柱可以由矩形繞一邊所在直線旋轉一週得到。

  (2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉一週得到。

  (3)圓臺可以由直角梯形繞直角腰所在直線旋轉一週或等腰梯形繞上下底面中心所在直線旋轉半周得到,也可由平行於底面的平面截圓錐得到。

  (4)球可以由半圓面繞直徑旋轉一週或圓面繞直徑旋轉半周得到。

  3、空間幾何體的三檢視

  空間幾何體的三檢視是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三檢視包括正檢視、側檢視、俯檢視。

  三檢視的長度特徵:“長對正,寬相等,高平齊”,即正檢視和側檢視一樣高,正檢視和俯檢視一樣長,側檢視和俯檢視一樣寬。若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三檢視中,要注意實、虛線的畫法。

  4、空間幾何體的直觀圖

  空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:

  (1)畫幾何體的底面

  在已知圖形中取互相垂直的x軸、y軸,兩軸相交於點O,畫直觀圖時,把它們畫成對應的x′軸、y′軸,兩軸相交於點O′,且使∠x′O′y′=45°或135°,已知圖形中平行於x軸、y軸的線段,在直觀圖中平行於x′軸、y′軸。已知圖形中平行於x軸的線段,在直觀圖中長度不變,平行於y軸的線段,長度變為原來的一半。

  (2)畫幾何體的高

  在已知圖形中過O點作z軸垂直於xOy平面,在直觀圖中對應的z′軸,也垂直於x′O′y′平面,已知圖形中平行於z軸的線段,在直觀圖中仍平行於z′軸且長度不變。

高一數學知識點總結歸納8

  冪函式的性質:

  對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函式的定義域是R,如果q是偶數,函式的定義域是[0,+∞)。當指數n是負整數時,設a=—k,則x=1/(x^k),顯然x≠0,函式的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那麼我們就可以知道:

  排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;

  排除了為0這種可能,即對於x<0x="">0的所有實數,q不能是偶數;

  排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。

  總結起來,就可以得到當a為不同的數值時,冪函式的定義域的不同情況如下:如果a為任意實數,則函式的定義域為大於0的所有實數;

  如果a為負數,則x肯定不能為0,不過這時函式的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函式的定義域為大於0的所有實數;如果同時q為奇數,則函式的定義域為不等於0的所有實數。

  在x大於0時,函式的值域總是大於0的實數。

  在x小於0時,則只有同時q為奇數,函式的值域為非零的實數。

  而只有a為正數,0才進入函式的值域。

  由於x大於0是對a的任意取值都有意義的,因此下面給出冪函式在第一象限的各自情況。

  可以看到:

  (1)所有的圖形都透過(1,1)這點。

  (2)當a大於0時,冪函式為單調遞增的,而a小於0時,冪函式為單調遞減函式。

  (3)當a大於1時,冪函式圖形下凹;當a小於1大於0時,冪函式圖形上凸。

  (4)當a小於0時,a越小,圖形傾斜程度越大。

  (5)a大於0,函式過(0,0);a小於0,函式不過(0,0)點。

  (6)顯然冪函式。

  解題方法:換元法

  解數學題時,把某個式子看成一個整體,用一個變數去代替它,從而使問題得到簡化,這種方法叫換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究物件,將問題移至新物件的知識背景中去研究,從而使非標準型問題標準化、複雜問題簡單化,變得容易處理。

  換元法又稱輔助元素法、變數代換法。透過引進新的變數,可以把分散的條件聯絡起來,隱含的條件顯露出來,或者把條件與結論聯絡起來。或者變為熟悉的形式,把複雜的計算和推證簡化。

  它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數式,在研究方程、不等式、函式、數列、三角等問題中有廣泛的應用。

  練習題:

  1、若f(x)=x2—x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。

  (1)求f(log2x)的最小值及對應的x值;

  (2)x取何值時,f(log2x)>f(1)且log2[f(x)]

  2、已知函式f(x)=3x+k(k為常數),A(—2k,2)是函式y=f—1(x)圖象上的點。

  (1)求實數k的值及函式f—1(x)的解析式;

  (2)將y=f—1(x)的圖象按向量a=(3,0)平移,得到函式y=g(x)的圖象,若2f—1(x+—3)—g(x)≥1恆成立,試求實數m的取值範圍。

高一數學知識點總結歸納9

  一:集合的含義與表示

  1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,並且能判斷一個給定的東西是否屬於這個整體。

  把研究物件統稱為元素,把一些元素組成的總體叫集合,簡稱為集。

  2、集合的中元素的三個特性:

  (1)元素的確定性:集合確定,則一元素是否屬於這個集合是確定的:屬於或不屬於。

  (2)元素的互異性:一個給定集合中的元素是的,不可重複的。

  (3)元素的無序性:集合中元素的位置是可以改變的,並且改變位置不影響集合

  3、集合的表示:{……}

  (1)用大寫字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2)集合的表示方法:列舉法與描述法。

  a、列舉法:將集合中的元素一一列舉出來{a,b,c……}

  b、描述法:

  ①區間法:將集合中元素的公共屬性描述出來,寫在大括號內表示集合。

  {x?R|x—3>2},{x|x—3>2}

  ②語言描述法:例:{不是直角三角形的三角形}

  ③Venn圖:畫出一條封閉的曲線,曲線裡面表示集合。

  4、集合的分類:

  (1)有限集:含有有限個元素的集合

  (2)無限集:含有無限個元素的集合

  (3)空集:不含任何元素的集合

  5、元素與集合的關係:

  (1)元素在集合裡,則元素屬於集合,即:a?A

  (2)元素不在集合裡,則元素不屬於集合,即:a¢A

  注意:常用數集及其記法:

  非負整數集(即自然數集)記作:N

  正整數集N—或N+

  整數集Z

  有理數集Q

  實數集R

  6、集合間的基本關係

  (1)。“包含”關係(1)—子集

  定義:如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含關係,稱集合A是集合B的子集。

【高一數學知識點總結歸納】相關文章: