閱讀屋>總結範文> 高中數學知識點總結

高中數學知識點總結

高中數學知識點總結 15篇

  總結是事後對某一時期、某一專案或某些工作進行回顧和分析,從而做出帶有規律性的結論,他能夠提升我們的書面表達能力,不妨坐下來好好寫寫總結吧。總結怎麼寫才不會流於形式呢?以下是小編整理的高中數學知識點總結 ,歡迎大家分享。

高中數學知識點總結 1

  集合的分類:

  (1)按元素屬性分類,如點集,數集。

  (2)按元素的個數多少,分為有/無限集

  關於集合的概念:

  (1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的物件就不能構成集合,也就是說,給定一個集合,任何一個物件是不是這個集合的元素也就確定了。

  (2)互異性:對於一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的物件,相同的物件歸入同一個集合時只能算作集合的一個元素。

  (3)無序性:判斷一些物件時候構成集合,關鍵在於看這些物件是否有明確的標準。

  集合可以根據它含有的元素的個數分為兩類:

  含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

  非負整數全體構成的集合,叫做自然數集,記作N。

  在自然數集內排除0的集合叫做正整數集,記作N+或N_。

  整數全體構成的集合,叫做整數集,記作Z。

  有理數全體構成的集合,叫做有理數集,記作Q。(有理數是整數和分數的統稱,一切有理數都可以化成分數的形式。)

  實數全體構成的集合,叫做實數集,記作R。(包括有理數和無理數。其中無理數就是無限不迴圈小數,有理數就包括整數和分數。數學上,實數直觀地定義為和數軸上的'點一一對應的數。)

  1、列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內表示這個集合,例如,由兩個元素0,1構成的集合可表示為{0,1}。

  有些集合的元素較多,元素的排列又呈現一定的規律,在不致於發生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

  例如:不大於100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}。

  無限集有時也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}。

  2、描述法:一種更有效地描述集合的方法,是用集合中元素的特徵性質來描述。

  例如:正偶數構成的集合,它的每一個元素都具有性質:“能被2整除,且大於0”

  而這個集合外的其他元素都不具有這種性質,因此,我們可以用上述性質把正偶數集合表示為{x∈R│x能被2整除,且大於0}或{x∈R│x=2n,n∈N+},大括號內豎線左邊的X表示這個集合的任意一個元素,元素X從實數集合中取值,在豎線右邊寫出只有集合內的元素x才具有的性質。

  一般地,如果在集合I中,屬於集合A的任意一個元素x都具有性質p(x),而不屬於集合A的元素都不具有的性質p(x),則性質p(x)叫做集合A的一個特徵性質。於是,集合A可以用它的性質p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質p(x)的所有元素構成的,這種表示集合的方法,叫做特徵性質描述法,簡稱描述法。

  例如:集合A={x∈R│x2—1=0}的特徵是X2—1=0

高中數學知識點總結 2

  第一、高考數學中有函式、數列、三角函式、平面向量、不等式、立體幾何等九大章節。

  主要是考函式和導數,這是我們整個高中階段裡最核心的板塊,在這個板塊裡,重點考察兩個方面:第一個函式的性質,包括函式的單調性、奇偶性;第二是函式的解答題,重點考察的是二次函式和高次函式,分函式和它的一些分佈問題,但是這個分佈重點還包含兩個分析就是二次方程的分佈的問題,這是第一個板塊。

  第二、平面向量和三角函式。

  重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函式的影象和性質,這裡重點掌握正弦函式和餘弦函式的性質,第三,正弦定理和餘弦定理來解三角形。難度比較小。

  第三、數列。

  數列這個板塊,重點考兩個方面:一個通項;一個是求和。

  第四、空間向量和立體幾何,在裡面重點考察兩個方面:一個是證明;一個是計算。

  第五、機率和統計。

  這一板塊主要是屬於數學應用問題的範疇,當然應該掌握下面幾個方面,第一……等可能的機率,第二………事件,第三是獨立事件,還有獨立重複事件發生的機率。

  第六、解析幾何。

  這是我們比較頭疼的問題,是整個試卷裡難度比較大,計算量的題,當然這一類題,我總結下面五類常考的題型,包括:

  第一類所講的直線和曲線的位置關係,這是考試最多的內容。考生應該掌握它的通法;

  第二類我們所講的動點問題;

  第三類是弦長問題;

  第四類是對稱問題,這也是20xx年高考已經考過的一點;

  第五類重點問題,這類題時往往覺得有思路,但是沒有答案,

  當然這裡我相等的是,這道題儘管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章裡我們要掌握比較好的演算法,來提高我們做題的準確度,這是我們所講的第六大板塊。

  第七、押軸題。

  考生在備考複習時,應該重點不等式計算的方法,雖然說難度比較大,我建議考生,採取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。

高中數學知識點總結 3

  有界性

  設函式f(x)在區間X上有定義,如果存在M>0,對於一切屬於區間X上的x,恆有|f(x)|≤M,則稱f(x)在區間X上有界,否則稱f(x)在區間上無界.

  單調性

  設函式f(x)的定義域為D,區間I包含於D.如果對於區間上任意兩點x1及x2,當x1f(x2),則稱函式f(x)在區間I上是單調遞減的.單調遞增和單調遞減的函式統稱為單調函式.

  奇偶性

  設為一個實變數實值函式,若有f(—x)=—f(x),則f(x)為奇函式.

  幾何上,一個奇函式關於原點對稱,亦即其影象在繞原點做180度旋轉後不會改變.

  奇函式的例子有x、sin(x)、sinh(x)和erf(x).

  設f(x)為一實變數實值函式,若有f(x)=f(—x),則f(x)為偶函式.

  幾何上,一個偶函式關於y軸對稱,亦即其圖在對y軸對映後不會改變.

  偶函式的例子有|x|、x2、cos(x)和cosh(x).

  偶函式不可能是個雙射對映.

  連續性

  在數學中,連續是函式的一種屬性.直觀上來說,連續的函式就是當輸入值的變化足夠小的時候,輸出的變化也會隨之足夠小的函式.如果輸入值的某種微小的變化會產生輸出值的一個突然的跳躍甚至無法定義,則這個函式被稱為是不連續的函式(或者說具有不連續性).

高中數學知識點總結 4

  ★高中數學導數知識點

  一、早期導數概念————特殊的形式大約在1629年法國數學家費馬研究了作曲線的切線和求函式極值的方法1637年左右他寫一篇手稿《求最大值與最小值的方法》。在作切線時他構造了差分f(A+E)—f(A),發現的因子E就是我們所說的導數f(A)。

  二、17世紀————廣泛使用的“流數術”17世紀生產力的發展推動了自然科學和技術的發展在前人創造性研究的基礎上大數學家牛頓、萊布尼茨等從不同的角度開始系統地研究微積分。牛頓的微積分理論被稱為“流數術”他稱變數為流量稱變數的變化率為流數相當於我們所說的導數。牛頓的有關“流數術”的主要著作是《求曲邊形面積》、《運用無窮多項方程的計算法》和《流數術和無窮級數》流數理論的實質概括為他的重點在於一個變數的函式而不在於多變數的方程在於自變數的`變化與函式的變化的比的構成最在於決定這個比當變化趨於零時的極限。

  三、19世紀導數————逐漸成熟的理論1750年達朗貝爾在為法國科學家院出版的《百科全書》第五版寫的“微分”條目中提出了關於導數的一種觀點可以用現代符號簡單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無窮小分析概論》中定義導數如果函式y=f(x)在變數x的兩個給定的界限之間保持連續並且我們為這樣的變數指定一個包含在這兩個不同界限之間的值那麼是使變數得到一個無窮小增量。19世紀60年代以後魏爾斯特拉斯創造了ε—δ語言對微積分中出現的各種型別的極限重加表達導數的定義也就獲得了今天常見的形式。

  四、實無限將異軍突起微積分第二輪初等化或成為可能微積分學理論基礎大體可以分為兩個部分。一個是實無限理論即無限是一個具體的東西一種真實的存在另一種是潛無限指一種意識形態上的過程比如無限接近。就歷史來看兩種理論都有一定的道理。其中實無限用了150年後來極限論就是現在所使用的。光是電磁波還是粒子是一個物理學長期爭論的問題後來由波粒二象性來統一。微積分無論是用現代極限論還是150年前的理論都不是最好的手段。

  高中數學導數要點

  1、求函式的單調性:

  利用導數求函式單調性的基本方法:設函式yf(x)在區間(a,b)內可導,(1)如果恆f(x)0,則函式yf(x)在區間(a,b)上為增函式;(2)如果恆f(x)0,則函式yf(x)在區間(a,b)上為減函式;(3)如果恆f(x)0,則函式yf(x)在區間(a,b)上為常數函式。

  利用導數求函式單調性的基本步驟:①求函式yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;④解不等式f(x)0,解集在定義域內的不間斷區間為減區間。

  反過來,也可以利用導數由函式的單調性解決相關問題(如確定引數的取值範圍):設函式yf(x)在區間(a,b)內可導,

  (1)如果函式yf(x)在區間(a,b)上為增函式,則f(x)0(其中使f(x)0的x值不構成區間);

  (2)如果函式yf(x)在區間(a,b)上為減函式,則f(x)0(其中使f(x)0的x值不構成區間);

  (3)如果函式yf(x)在區間(a,b)上為常數函式,則f(x)0恆成立。

  2、求函式的極值:

  設函式yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函式f(x)的極小值(或極大值)。

  可導函式的極值,可透過研究函式的單調性求得,基本步驟是:

  (1)確定函式f(x)的定義域;(2)求導數f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區間,並列表:x變化時,f(x)和f(x)值的

  變化情況:

  (4)檢查f(x)的符號並由表格判斷極值。

  3、求函式的最大值與最小值:

  如果函式f(x)在定義域I記憶體在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函式在定義域上的最大值。函式在定義域內的極值不一定唯一,但在定義域內的最值是唯一的。

  求函式f(x)在區間[a,b]上的最大值和最小值的步驟:(1)求f(x)在區間(a,b)上的極值;

  (2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區間[a,b]上的最大值與最小值。

  4、解決不等式的有關問題:

  (1)不等式恆成立問題(絕對不等式問題)可考慮值域。

  f(x)(xA)的值域是[a,b]時,

  不等式f(x)0恆成立的充要條件是f(x)max0,即b0;

  不等式f(x)0恆成立的充要條件是f(x)min0,即a0。

  f(x)(xA)的值域是(a,b)時,

  不等式f(x)0恆成立的充要條件是b0;不等式f(x)0恆成立的充要條件是a0。

  (2)證明不等式f(x)0可轉化為證明f(x)max0,或利用函式f(x)的單調性,轉化為證明f(x)f(x0)0。

  5、導數在實際生活中的應用:

  實際生活求解最大(小)值問題,通常都可轉化為函式的最值。在利用導數來求函式最值時,一定要注意,極值點唯一的單峰函式,極值點就是最值點,在解題時要加以說明。

高中數學知識點總結 5

  1.萬能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)

  2.輔助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a

  3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

  向量公式:

  1.單位向量:單位向量a0=向量a/|向量a|

  2.P(x,y)那麼向量OP=x向量i+y向量j|向量OP|=根號(x平方+y平方)

  3.P1(x1,y1)P2(x2,y2)那麼向量P1P2={x2-x1,y2-y1}|向量P1P2|=根號[(x2-x1)平方+(y2-y1)平方]

  4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根號(x1平方+y1平方)_根號(x2平方+y2平方)

  5.空間向量:同上推論(提示:向量a={x,y,z})

  6.充要條件:如果向量a向量b那麼向量a_向量b=0如果向量a//向量b那麼向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2

  7.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方

高中數學知識點總結 6

  等比數列公式性質知識點

  1.等比數列的有關概念

  (1)定義:

  如果一個數列從第2項起,每一項與它的前一項的比等於同一個常數(不為零),那麼這個數列就叫做等比數列.這個常數叫做等比數列的公比,通常用字母q表示,定義的表示式為an+1/an=q(n∈N_,q為非零常數).

  (2)等比中項:

  如果a、G、b成等比數列,那麼G叫做a與b的等比中項.即:G是a與b的等比中項a,G,b成等比數列G2=ab.

  2.等比數列的有關公式

  (1)通項公式:an=a1qn-1.

  3.等比數列{an}的常用性質

  (1)在等比數列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),則am·an=ap·aq=a.

  特別地,a1an=a2an-1=a3an-2=….

  (2)在公比為q的等比數列{an}中,數列am,am+k,am+2k,am+3k,…仍是等比數列,公比為qk;數列Sm,S2m-Sm,S3m-S2m,…仍是等比數列(此時q≠-1);an=amqn-m.

  4.等比數列的特徵

  (1)從等比數列的定義看,等比數列的任意項都是非零的',公比q也是非零常數.

  (2)由an+1=qan,q≠0並不能立即斷言{an}為等比數列,還要驗證a1≠0.

  5.等比數列的前n項和Sn

  (1)等比數列的前n項和Sn是用錯位相減法求得的,注意這種思想方法在數列求和中的運用.

  (2)在運用等比數列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.

  等比數列知識點

  1.等比中項

  如果在a與b中間插入一個數G,使a,G,b成等比數列,那麼G叫做a與b的等比中項。

  有關係:

  注:兩個非零同號的實數的等比中項有兩個,它們互為相反數,所以G2=ab是a,G,b三數成等比數列的必要不充分條件。

  2.等比數列通項公式

  an=a1_q’(n-1)(其中首項是a1,公比是q)

  an=Sn-S(n-1)(n≥2)

  前n項和

  當q≠1時,等比數列的前n項和的公式為

  Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

  當q=1時,等比數列的前n項和的公式為

  Sn=na1

  3.等比數列前n項和與通項的關係

  an=a1=s1(n=1)

  an=sn-s(n-1)(n≥2)

  4.等比數列性質

  (1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;

  (2)在等比數列中,依次每k項之和仍成等比數列。

  (3)從等比數列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中項:q、r、p成等比數列,則aq·ap=ar2,ar則為ap,aq等比中項。

  記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一個各項均為正數的等比數列各項取同底指數冪後構成一個等差數列;反之,以任一個正數C為底,用一個等差數列的各項做指數構造冪Can,則是等比數列。在這個意義下,我們說:一個正項等比數列與等差數列是“同構”的。

  (5)等比數列前n項之和Sn=a1(1-q’n)/(1-q)

  (6)任意兩項am,an的關係為an=am·q’(n-m)

  (7)在等比數列中,首項a1與公比q都不為零。

  注意:上述公式中a’n表示a的n次方。

  等比數列知識點總結

  等比數列:如果一個數列從第2項起,每一項與它的前一項的比等於同一個常數,這個數列就叫做等比數列。這個常數叫做等比數列的公比,公比通常用字母q表示(q≠0)。

  1:等比數列通項公式:an=a1_q^(n-1);推廣式:an=am·q^(n-m);

  2:等比數列求和公式:等比求和:Sn=a1+a2+a3+.......+an

  ①當q≠1時,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

  ②當q=1時,Sn=n×a1(q=1)記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  3:等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。

  4:性質:

  ①若m、n、p、q∈N,且m+n=p+q,則am·an=ap_aq;

  ②在等比數列中,依次每k項之和仍成等比數列.

  例題:設ak,al,am,an是等比數列中的第k、l、m、n項,若k+l=m+n,求證:ak_al=am_an

  證明:設等比數列的首項為a1,公比為q,則ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1)

  所以:ak_al=a^2_q^(k+l-2),am_an=a^2_q(m+n-2),故:ak_al=am_an

  說明:這個例題是等比數列的一個重要性質,它在解題中常常會用到。它說明等比數列中距離兩端(首末兩項)距離等遠的兩項的乘積等於首末兩項的乘積,即:a(1+k)·a(n-k)=a1·an

  對於等差數列,同樣有:在等差數列中,距離兩端等這的兩項之和等於首末兩項之和。即:a(1+k)+a(n-k)=a1+an

高中數學知識點總結 7

  1.定義法:

  判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關係畫出箭頭示意圖,再利用定義判斷即可.

  2.轉換法:

  當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷.

  3.集合法

  在命題的條件和結論間的關係判斷有困難時,可從集合的角度考慮,記條件p、q對應的集合分別為A、B,則:

  若A∩B,則p是q的充分條件.

  若A∪B,則p是q的必要條件.

  若A=B,則p是q的充要條件.

  若A∈B,且B∈A,則p是q的既不充分也不必要條件.

高中數學知識點總結 8

  空間兩條直線只有三種位置關係:平行、相交、異面。

  按是否共面可分為兩類:

  (1)共面:平行、相交

  (2)異面:

  異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

  異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。

  兩異面直線所成的角:範圍為(0°,90°)esp。空間向量法。

  兩異面直線間距離:公垂線段(有且只有一條)esp。空間向量法。

  若從有無公共點的角度看可分為兩類:

  (1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面。

  直線和平面的位置關係:

  直線和平面只有三種位置關係:在平面內、與平面相交、與平面平行。

  ①直線在平面內——有無數個公共點

  ②直線和平面相交——有且只有一個公共點

  直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。

  空間向量法(找平面的法向量)

  規定:a、直線與平面垂直時,所成的角為直角;b、直線與平面平行或在平面內,所成的角為0°角。

  由此得直線和平面所成角的取值範圍為[0°,90°]。

  最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角。

  三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那麼它也與這條斜線垂直。

  直線和平面垂直

  直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。

  直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那麼這條直線垂直於這個平面。

  直線與平面垂直的性質定理:如果兩條直線同垂直於一個平面,那麼這兩條直線平行。直線和平面平行——沒有公共點

  直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那麼我們就說這條直線和這個平面平行。

  直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那麼這條直線和這個平面平行。

  直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那麼這條直線和交線平行。

高中數學知識點總結 9

  簡單隨機抽樣

  (1)總體和樣本

  ①在統計學中 , 把研究物件的全體叫做總體。②把每個研究物件叫做個體。③把總體中個體的總數叫做總體容量。④為了研究總體 的有關性質,一般從總體中隨機抽取一部分: x1,x2 , …,xx 研究,我們稱它為樣本。其中個體的個數稱為樣本容量。

  (2)簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨

  機地抽取調查單位。特點是:每個樣本單位被抽中的可能性相同(機率相等),樣本的每個單位完全獨立,彼此間無一定的關聯性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數目較少時,才採用這種方法。

  (3)簡單隨機抽樣常用的方法:

  ①抽籤法;②隨機數表法;③計算機模擬法;③使用統計軟體直接抽取。

  在簡單隨機抽樣的樣本容量設計中,主要考慮:①總體變異情況;②允許誤差範圍;③機率保證程度。

  (4)抽籤法:

  ①給調查物件群體中的每一個物件編號;②準備抽籤的工具,實施抽籤;③對樣本中的每一個個體進行測量或調查

  (5)隨機數表法

高中數學知識點總結 10

  一、直線與方程高考考試內容及考試要求:

  考試內容:

  1.直線的傾斜角和斜率;直線方程的點斜式和兩點式;直線方程的一般式;

  2.兩條直線平行與垂直的條件;兩條直線的交角;點到直線的距離;

  考試要求:

  1.理解直線的傾斜角和斜率的概念,掌握過兩點的直線的斜率公式,掌握直線方程的點斜式、兩點式、一般式,並能根據條件熟練地求出直線方程;

  2.掌握兩條直線平行與垂直的條件,兩條直線所成的角和點到直線的距離公式能夠根據直線的方程判斷兩條直線的位置關係;

  二、直線與方程

  課標要求:

  1.在平面直角座標系中,結合具體圖形,探索確定直線位置的幾何要素;

  2.理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式;

  3.根據確定直線位置的幾何要素,探索並掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函式的關係;

  4.會用代數的方法解決直線的有關問題,包括求兩直線的交點,判斷兩條直線的位置關係,求兩點間的距離、點到直線的距離以及兩條平行線之間的距離等。

  要點精講:

  1.直線的傾斜角:當直線l與x軸相交時,取x軸作為基準,x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角。特別地,當直線l與x軸平行或重合時,規定α= 0°.

  傾斜角α的取值範圍:0°≤α<180°. 當直線l與x軸垂直時, α= 90°.

  2.直線的斜率:一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k = tanα

  (1)當直線l與x軸平行或重合時,α=0°,k = tan0°=0;

  (2)當直線l與x軸垂直時,α= 90°,k 不存在。

  由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在。

  3.過兩點p1(x1,y1),p2(x2,y2)(x1≠x2)的直線的斜率公式:

  (若x1=x2,則直線p1p2的斜率不存在,此時直線的傾斜角為90°)。

  4.兩條直線的平行與垂直的判定

  (1)若l1,l2均存在斜率且不重合:

  ①;②

  注: 上面的等價是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個前提,結論並不成立。

  (2)

  若A1、A2、B1、B2都不為零。

  注意:若A2或B2中含有字母,應注意討論字母=0與0的情況。

  兩條直線的交點:兩條直線的交點的個數取決於這兩條直線的方程組成的方程組的解的個數。

  5.直線方程的五種形式

  確定直線方程需要有兩個互相獨立的條件,確定直線方程的形式很多,但必須注意各種形式的直線方程的適用範圍。

  直線的點斜式與斜截式不能表示斜率不存在(垂直於x 軸)的直線;兩點式不能表示平行或重合兩座標軸的直線;截距式不能表示平行或重合兩座標軸的直線及過原點的直線。

  6.直線的交點座標與距離公式

  (1)兩直線的交點座標

  一般地,將兩條直線的方程聯立,得方程組

  若方程組有唯一解,則兩條直線相交,解即為交點的座標;若方程組無解,則兩條直線無公共點,此時兩條直線平行。

  (2)兩點間距離

  兩點P1(x1,y1),P2(x2,y2)間的距離公式

  特別地:軸,則、軸,則

  (3)點到直線的距離公式

  點到直線的距離為:

  (4)兩平行線間的距離公式:

  若,則:

  注意點:x,y對應項係數應相等。

高中數學知識點總結 11

  考點一、對映的概念

  1.瞭解對應大千世界的對應共分四類,分別是:一對一多對一一對多多對多

  2.對映:設A和B是兩個非空集合,如果按照某種對應關係f,對於集合A中的任意一個元素x,在集合B中都存在的一個元素y與之對應,那麼,就稱對應f:A→B為集合A到集合B的一個對映(mapping).對映是特殊的對應,簡稱“對一”的對應.包括:一對一多對一

  考點二、函式的概念

  1.函式:設A和B是兩個非空的數集,如果按照某種確定的對應關係f,對於集合A中的任意一個數x,在集合B中都存在確定的數y與之對應,那麼,就稱對應f:A→B為集合A到集合B的一個函式.記作y=f(x),xA.其中x叫自變數,x的取值範圍A叫函式的定義域;與x的值相對應的y的值函式值,函式值的集合叫做函式的值域.函式是特殊的對映,是非空數集A到非空數集B的對映.

  2.函式的三要素:定義域、值域、對應關係.這是判斷兩個函式是否為同一函式的依據.

  3.區間的概念:設a,bR,且a

  ①(a,b)={xa

  ⑤(a,+∞)={>a}⑥[a,+∞)={≥a}⑦(—∞,b)={

  考點三、函式的表示方法

  1.函式的三種表示方法列表法圖象法解析法

  2.分段函式:定義域的不同部分,有不同的對應法則的函式.注意兩點:①分段函式是一個函式,不要誤認為是幾個函式.②分段函式的定義域是各段定義域的並集,值域是各段值域的並集.

  考點四、求定義域的幾種情況

  ①若f(x)是整式,則函式的定義域是實數集R;

  ②若f(x)是分式,則函式的定義域是使分母不等於0的實數集;

  ③若f(x)是二次根式,則函式的定義域是使根號內的式子大於或等於0的實數集合;

  ④若f(x)是對數函式,真數應大於零.

  ⑤.因為零的零次冪沒有意義,所以底數和指數不能同時為零.

  ⑥若f(x)是由幾個部分的數學式子構成的,則函式的定義域是使各部分式子都有意義的實數集合;

  ⑦若f(x)是由實際問題抽象出來的函式,則函式的定義域應符合實際問題

高中數學知識點總結 12

  簡單隨機抽樣的定義:

  一般地,設一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣。

  簡單隨機抽樣的特點:

  (1)用簡單隨機抽樣從含有N個個體的總體中抽取一個容量為n的樣本時,每次抽取一個個體時任一個體被抽到的機率為___;在整個抽樣過程中各個個體被抽到的機率為____。

  (2)簡單隨機抽樣的特點是,逐個抽取,且各個個體被抽到的機率相等。

  (3)簡單隨機抽樣方法,體現了抽樣的客觀性與公平性,是其他更復雜抽樣方法的基礎。

  (4)簡單隨機抽樣是不放回抽樣;它是逐個地進行抽取;它是一種等機率抽樣。

  簡單抽樣常用方法:

  (1)抽籤法:先將總體中的所有個體(共有N個)編號(號碼可從1到N),並把號碼寫在形狀、大小相同的號簽上(號籤可用小球、卡片、紙條等製作),然後將這些號籤放在同一個箱子裡,進行均勻攪拌,抽籤時每次從中抽一個號籤,連續抽取n次,就得到一個容量為n的樣本適用範圍:總體的個體數不多時優點:抽籤法簡便易行,當總體的個體數不太多時適宜採用抽籤法。

  (2)隨機數表法:隨機數表抽樣“三步曲”:第一步,將總體中的個體編號;第二步,選定開始的數字;第三步,獲取樣本號碼機率。

高中數學知識點總結 13

  什麼是不等式?

  一般地,用純粹的大於號“>”、小於號“<”連線的不等式稱為嚴格不等式,用不小於號(大於或等於號)“≥”、不大於號(小於或等於號)“≤”連線的不等式稱為非嚴格不等式,或稱廣義不等式。總的來說,用不等號(<,>,≥,≤,≠)連線的式子叫做不等式。

  通常不等式中的數是實數,字母也代表實數,不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號也可以為<,≤,≥,>中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達一個命題,也可以表示一個問題。

  數學知識點1、不等式性質比較大小方法:

  (1)作差比較法(2)作商比較法

  不等式的基本性質

  ①對稱性:a > b,b > a

  ②傳遞性:a > b,b > ca > c

  ③可加性:a > b a + c > b + c

  ④可積性:a > b,c > 0,ac > bc

  ⑤加法法則:a > b,c > d,a + c > b + d

  ⑥乘法法則:a > b > 0,c > d > 0,ac > bd

  ⑦乘方法則:a > b > 0,an > bn(n∈N)

  ⑧開方法則:a > b > 0

  數學知識點2、算術平均數與幾何平均數定理:

  (1)如果a、b∈R,那麼a2 + b2 ≥2ab;(當且僅當a=b時等號)

  (2)如果a、b∈R+,那麼(當且僅當a=b時等號)推廣:

  如果為實數,則重要結論

  (1)如果積xy是定值P,那麼當x=y時,和x+y有最小值2;

  (2)如果和x+y是定值S,那麼當x=y時,和xy有最大值S2/4。

  數學知識點3、證明不等式的常用方法:

  比較法:比較法是最基本、最重要的方法。

  當不等式的兩邊的差能分解因式或能配成平方和的形式,則選擇作差比較法;當不等式的兩邊都是正數且它們的商能與1比較大小,則選擇作商比較法;碰到絕對值或根式,我們還可以考慮作平方差。

  綜合法:從已知或已證明過的不等式出發,根據不等式的性質推匯出欲證的不等式。綜合法的放縮經常用到均值不等式。

  分析法:不等式兩邊的聯絡不夠清楚,透過尋找不等式成立的充分條件,逐步將欲證的不等式轉化,直到尋找到易證或已知成立的結論。

高中數學知識點總結 14

  一、求導數的方法

  (1)基本求導公式

  (2)導數的四則運算

  (3)複合函式的導數

  設在點x處可導,y=在點處可導,則複合函式在點x處可導,且即

  二、關於極限

  1、數列的極限:

  粗略地說,就是當數列的項n無限增大時,數列的項無限趨向於A,這就是數列極限的描述性定義。記作:=A。如:

  2、函式的極限:

  當自變數x無限趨近於常數時,如果函式無限趨近於一個常數,就說當x趨近於時,函式的極限是,記作

  三、導數的概念

  1、在處的導數。

  2、在的導數。

  3。函式在點處的導數的幾何意義:

  函式在點處的導數是曲線在處的切線的斜率,

  即k=,相應的切線方程是

  注:函式的導函式在時的函式值,就是在處的導數。

  例、若=2,則=()A—1B—2C1D

  四、導數的綜合運用

  (一)曲線的切線

  函式y=f(x)在點處的導數,就是曲線y=(x)在點處的切線的斜率。由此,可以利用導數求曲線的切線方程。具體求法分兩步:

  (1)求出函式y=f(x)在點處的導數,即曲線y=f(x)在點處的切線的斜率k=

  (2)在已知切點座標和切線斜率的條件下,求得切線方程為x。

高中數學知識點總結 15

  1.求函式的單調性

  利用導數求函式單調性的基本方法:設函式yf(x)在區間(a,b)內可導,(1)如果恆f(x)0,則函式yf(x)在區間(a,b)上為增函式;(2)如果恆f(x)0,則函式yf(x)在區間(a,b)上為減函式;(3)如果恆f(x)0,則函式yf(x)在區間(a,b)上為常數函式.

  利用導數求函式單調性的基本步驟:①求函式yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;④解不等式f(x)0,解集在定義域內的不間斷區間為減區間.

  反過來,也可以利用導數由函式的單調性解決相關問題(如確定引數的取值範圍):設函式yf(x)在區間(a,b)內可導,

  (1)如果函式yf(x)在區間(a,b)上為增函式,則f(x)0(其中使f(x)0的x值不構成區間);

  (2)如果函式yf(x)在區間(a,b)上為減函式,則f(x)0(其中使f(x)0的x值不構成區間);

  (3)如果函式yf(x)在區間(a,b)上為常數函式,則f(x)0恆成立.

  2.求函式的極值:

  設函式yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函式f(x)的極小值(或極大值).

  可導函式的極值,可透過研究函式的單調性求得,基本步驟是:

  (1)確定函式f(x)的定義域;(2)求導數f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區間,並列表:x變化時,f(x)和f(x)值的變化情況:

  (4)檢查f(x)的符號並由表格判斷極值.

  3.求函式的值與最小值:

  如果函式f(x)在定義域I記憶體在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函式在定義域上的值.函式在定義域內的極值不一定,但在定義域內的最值是的.

  求函式f(x)在區間[a,b]上的值和最小值的步驟:(1)求f(x)在區間(a,b)上的極值;

  (2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區間[a,b]上的值與最小值.

  4.解決不等式的有關問題:

  (1)不等式恆成立問題(絕對不等式問題)可考慮值域.

  f(x)(xA)的值域是[a,b]時,

  不等式f(x)0恆成立的充要條件是f(x)max0,即b0;

  不等式f(x)0恆成立的充要條件是f(x)min0,即a0.

  f(x)(xA)的值域是(a,b)時,

  不等式f(x)0恆成立的充要條件是b0;不等式f(x)0恆成立的充要條件是a0.

  (2)證明不等式f(x)0可轉化為證明f(x)max0,或利用函式f(x)的單調性,轉化為證明f(x)f(x0)0.

  5.導數在實際生活中的應用:

  實際生活求解(小)值問題,通常都可轉化為函式的最值.在利用導數來求函式最值時,一定要注意,極值點的單峰函式,極值點就是最值點,在解題時要加以說明.

【高中數學知識點總結】相關文章: